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ABSTRACT zLL4J- 
1 Mott-Smith method is extended to derive the first  order -- counting 

Rankine-Hugoniot relations as  the zero order - -  shock relations for a curved 
I shock-wave formed in a flow when the Reynolds number is not very large. 

role of the additive constant that occurs in the solution of the zero order shock- 

The 

I 

wave structure is discussed. Also, solution of the first order  shock-wave 

structure is obtained. 

iii  
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1. INTRODUCTION 

For very large Reynolds number supersonic flows , a shock-wave is 

t reated as a discontinuity in the values of flow variables. 

wave , Rankine-Hugoniot relations give , directly, the values of these variables 

behind the shock-wave in terms of those ahead of it. When the shock-wave is 

curved, it may locally be replaced by the tangent plane and the Rankine-Hugoniot 

relations f o r  an oblique shock-wave be applied t o  

re la te  the values of flow variables  on the two sides. 

For a plane shock- 

However, when the Reynolds number 

(based on the radius of curvature at the nose 

of the shock-wave) is only moderately large,  

the gradients in the region behind the shock- 

wave necessitate corrections in the Rankine- 

Hugoniot relations and the problem that we 

study here  is to find the f i rs t  (in t e r m s  of the inverse of Reynolds number) 

correct ive t e r m  in the shock relations. 

the f ramework of Navier-Stokes equations. 2 1  3' 

\ 
This study has a l ready been made in 

We propose to  approach this 

problem f rom the kinetic theory point of view and to this end, extend Mott-Smith' 

method which is known to  apply successfully to the problem of a plane shock- 

wave - -  both in a single gas' and a mixture. 

shall  study a two dimensional shock in the flow of a monatomic gas 
K that the molecules obey the Maxwellian law of fo rce  - -  viz. - 
5 -  r 

To keep the analysis simple, we 
6 and assume 

2. STATEMENT OF THE PROBLEM 

A shock-wave of known shape is formed in a uniform supersonic flow of 

velocity V , temperature  8 and number density n . If a character is t ic  

length 1 -- say  the radius  of curvature at the nose of the shock-wave - -  be 

introduced, we can define a dimensionless parameter  E by the relation 

where m is the molecular mass  and p the coefficient of viscosity a t  temperature  

0 . A s  the molecules a r e  supposed to be Maxwellian, we have 
7 



I . c =  

where k is the Boltzmann constant and A the value of the scattering 
2 

integral. The flow conditions a r e  assumed to be such that E is moderately 

small  and the flow variables behind the shock-wave a r e  expanded in power- 

s e r i e s  of E. 

Rankine-Hugoniot relations; the problem posed here  is to obtain the second 

t e rms  of the s e r i e s .  

The f i rs t  t e r m s  of these s e r i e s  a r e  those obtained from the 

3.  METHOD 

Velocity components, number density and length a r e  non-dimensionalized 

with reference to V , n and e respectively. Temperature  8 is non- 
m 2  dimensionalized with reference to - V and the non-dimensional quantity k 

is denoted by p .  In what follows, the above non-dimensionalization k 8  - -  
v 2  

is supposed to have been car r ied  out. Mach number M of the flow is given by 

m 

Let be the position in which the shock- 

wave, postulated as the surface of discontinuity, 

would be i f  the t e r m s  of o rde r  E a r e  not taken 

into account. Curvilinear coordinates (x, y) a r e  

introduced where x is the distance f rom the 

nose along the shock-wave and y is normal  a t  

the point x; K is the curvature at  this point. 

Velocity-components along x and y directions 

a r e  denoted by u and v ,  respectively. Super- 

scripts (1) and (2 )  a r e  used to  character ize  

region 1 (ahead of E) and 2 (behind E), 
respectively. 

\ 
1 

Within the shock region, gradients along the y direction a r e  of O ( 1  / e ) ;  

therefore, the coordinate y is s t re tched a s  

(4) 
y =  - Y 

E 

2 



( 5 )  

In region 2 (y>  01, various flow variables a r e  expanded as follows: 

In region l ( y  < 0), u ( l )  and v ( l )  a r e  functions of x alone while p ( l )  and 
(1) n a r e  constant. However, to preserve  symmetry in notation we shall  write 

I ( 5 ,  T) ,  C) denote the components of the molecular velocity and the velocity 

distribution function in the shock region is postulated to have the form I 

3 



A s  Y -+ -00 (+ w), the flow in the shock region should match, t e r m  by 

in powers of E, with the upstream flow (downstream flow evaluated at y = + 0). 

4. MAXWELL TRANSFER EQUATIONS 

For any quantity Q(5,r) , S ) ,  the Maxwell t r ans fe r  equation in the curvi-  
8 

linear coordinate system introduced above has the form 

= SQ (E) d5 dr) dC 
collision 

(10) 

1 2 2 2  
2 When Q=m, m5, mr) or - m ( 5  + r )  + S ) the integral on the right hand s ide 

vanishes, so  that (substituting f o r  f f rom Equation 7), we obtain the following 

conservation equations 

4 



A s  will become apparent in the subsequent analysis, one more  equation 

is required to completely determine the problem. The choice of Q for  this 

additional equation is arbi t rary.  

ove r  another. 

We shall not discuss the mer i t s  of one choice 
2 9 and obtain For  reasons of simplicity alone we choose Q = r) 

5 



5. RANKINE-HUGONIOT RELATIONS AND ZERO 
ORDER SHOCK STRUCTURE 

Substituting the expansions ( 5) and ( 8) in Equations ( 11)-(15)J sorting 

out t e rms  independent of E and making use of (6), the zero o rde r  problem 

( 2  
-uO 

F rom the f i r s t  four of Equations (16) and the boundary conditions (9), we 

obtain the following relations 

where Q(X) is defined by the relation 

2 
(1) - 4a-1 v(l)  ‘ Bo - -  5 0 

Relations (17)  may be recognized as Rankine-Hugoniot relations obtained 

by local replacement of the curved shock wave by a plane shock wave of the 

same slope. 

With the help of relations (17) the last equation in (16) yields the following 
( - 1  (+ 1 solution f o r  n and n 
0 e I ( - )  - 1 

(t) = L e n 
l+e 

A(Y+L) n 
0 l+e 

A (  Y+L) 

CY A(Y+L) 0 

6 



, 

. where 

1 1 -a 
2 (1) a(l+a) A(x) = - 
vo 

(20) 

and L is constant of integration, the determination of which is discussed in the 

following section. 

Solution (19) gives the ze ro  o rde r  shock s t ruc ture .  

6 .  ADDITIVE CONSTANT THAT OCCURS IN THE SOLUTION OF 
THE ZERO ORDER SHOCK STRUCTURE 

The boundary conditions (9) on nk-’ and n(+) do not determine the con- 
0 

stant L that occurs  in the solution (19).  

assigning a specified value to the density (and consequently to each flow vari-  

able) a t  the point Y = 0 which is the position of the shock-wave postulated a s  a 

mathematical  discontinuity. 

Every choice of L corresponds to 

However, L is involved in the f i rs t  o rder  ( t e rms  containing f i rs t  power 

of E) corrections in the shock relations and, therefore, inasmuch that the values 

assumed, behind the shock-wave , by various flow variables a r e  not a rb i t ra ry ,  

the constant L cannot be altogether arbitrary.  

correct ly  that L need be specified only i f  the position of the obstacle - -  and 

there  must be an obstacle to  produce a curved shock-wave -- has to be 

determined up to the o rde r  E but they a r e  wrong in implying that as far a s  

the determination of the f i r s t  o rder  corrections in the shock relations is con- 

cerned, L may be chosen arbitrari ly;  in fact, each choice of L leads to different 

expressions for the f i r s t  o rde r  corrections. 

appear  in the f i rs t  o rde r  corrections (Equations 33)  and the numerical  values 

of these corrections should be calculated only after determining L by matching 

with the flow between the shock-wave and the body. 

4 Chow and Ting point out 

Thus, L should be allowed to 

The solution (19) implies that in the zero order  shock s t ruc ture ,  the 
( 2 )  ) density assumes  i ts  mean value (arithmetic mean between N ( l )  and No 

point Y = -L. 

postulated a s  a mathematical  discontinuity and the point in the zero o rde r  shock 

s t ruc ture  where the value assumed by the density is the mean of the values at  

the two ends of the shock-wave. 

at  the 
0 

Thus t L  is the distance between the position of the shock-wave 

7 



7. FIRST ORDER CORRECTIONS IN THE SHOCK RELATIONS 4 

Substituting expansions (5) and (8) in Equations (11)-(14), sorting out 
(+) coefficients of E and making use of (17)  and the relation n(-)+crn 

first order  problem simplifies to 

= 1, the 
0 0 

2 
ClP ( - )  

2 
V(l)(U(l) 0 0  t 40 Vo )(n, + cYn(+))+(U;) 1 + ( 4 a +  2~ 

0 

0 0 0 0 0 

Integrating Equations (21)-(24) with respect to  Y f rom -00 to +a, making 

dY , the following S' use of the boundary conditions ( 9 )  and replacing Y by 

relations a r e  obtained 0 



+J 0 

( 2 ) '  Quantities like U etc . ,  can be expressed in t e r m s  of x-derivatives 
0 

(2)  of U 

velocity distribution function fo r  region 2 may be postulated a s  

e t c . ,  in the following manner.  To the zero order  approximation, the 
0 

9 



f r o m  which the following conservation equations may be derived 

Equations (30) evaluated at  y=+O give 

- ( 1 )  ( 2 ) '  = K V r ) - d ( - u  1 ( 1 )  ) 
(Y vo ( 2 ) '  + avo No dx CY o 

n 

10 



. Substituting (19), (31) and (32)  in the integrals on the right hand side of 

Equations (25) - (28) ,  and evaluating these integrals, the following algebraic 

equations giving the first o rde r  corrections -- E U1 , etc . ,  - -  in the shock 

relations , a r e  obtained 

(2)  

It may be noted that the first  o rde r  corrections obtained above involve 

only the local slope through components U(l)and and the first  a r c -  ( d  0 

derivatives (derivative y and the curvature K )  but neither the second a r c -  

dK Hence the above derivatives d /dx nor  the rate of change of curvature  - ds ' 

2 2 LlX 

results remain unaltered if the curved shock is locally replaced by the c i rc le  

of curvature  - -  a result stated, without explicit analysis, in Reference 4 .  

Except for the difference in the definition of the coefficients of viscosity, the 

above results a r e  directly comparable with those obtained from Navier-Stokes 

theory. 3 

8 .  FIRST ORDER SHOCK STRUCTURE 

Sorting out coefficients of E in Equation (15) , the following differential 

equation is obtained 

11 



A(YtL) 3 2  e V( l )  (1-a )Y 
0 (l+eA(Y+L)) 

(+I  3 an ( - )  

o ay 5 

3 an 
1 2 & 2  1 1 2 + 2 a  2 (1) 1 

a v o  ay +- +- 5 

2 2 A ( Y + L )  

0 )e  A(Y+L) + Kpb'y2ub"- 1 + v(1)(2ub])- $a(l+CY)V 
0 l+e A (Y+L) l+e 

Any one out of Equations (21)-(24) may be used to  eliminate nl  (+) f rom 

Equation (34). We choose Equation (23) as  it does not contain x-derivatives 
( - )  
1 0 -  

of n and n(+) Equation (23) may be rewritten in the following fo rm 

Integrating Equation (35) with respect to  Y and evaluating the constant 

of integration by taking limit a s  Y +-a, we obtain 

1 2  



( 1 ) )+yV( 2) I)} 
0 

+2ffv0 

Substituting in (34)  values of an[:)/aY and n r )  from Equations (35)  and 

(36). respectively, we get the following differential equation for n (-) 1 

1 A(Y+L)  ( - )  a n  

ay 
l + e  

i 1 
+ g3(x) 

l+e A(Y+L) 

A(Y+L) e 
+ g5(x) A(Y+L) 

l+e 

A(Y+L)  e 

( l teA(Y+L))2 

A(Y+L)  = gl(x) + g2 
l + e  

e 
+ g4(x) A(Y+L)  

l + e  

e 

A (Y+L) 

A ( Y + L )  
+ g,(x) + g+x) y 

+ g f j ( x )  1 A(Y+L)  log ( l+eA(Y+L))  
l+e 

A ( Y t L )  

log A ( Y t L )  + g9(x) A(Y+L)  
l+e 

1 e 

l + e  

where 

1 3  

(37) 



g,(x) = 0 
2 2(1-(u ) 

5K ( U ( l )  2 - v ( l ? )  
0 0 g,(x) = 

4(l+a) Vo ( U 2  

Equa t ion  (37) admits the s o l u t i o n  

14 



1 A(Y+L) 1 e - -  
A 

n 

Y ,! A(Y+L) 
e A(YtL) Y2 - A  - + A  

l+e 
A (Y+ L) 2 

I (39) 

A (Y+L) 1 1 -A(Y+L) e ( Y - x - x e  )log A(Y+L) 
l+e 

- -  1 e-A(Y+L)- A S  yA(y+L) dY 
l+e A 

+gg(x) 

where C(x) is the constant (with respect to Y)  of integration. 
(-)-, 0. 
1 ditions on n( - )  are that as  Y +* ma n 

of n(-)+m. 

again, n1 

within the first o r d e r  shock s t ructure .  

The boundary con- 

But as Y * * ma the coefficient 
1 
Therefore,  these boundary conditions do not determine C(x). Once 

( - )  (x) can be completely determined only i f  we specify a definite point 

1 5  
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